32
So, you've finished your first research project ... now what?

Ross Upshur, MD, MA, MSc, CCFP, FRCPC

ILLUSTRATIVE CASE

After completing a research project exploring whether the introduction of a computer-based reminder system actually increased the provision of selected preventive services in a General Internal Medicine ambulatory clinic, a third-year Internal Medicine resident considers what, if any, further research experiences she should pursue during the remainder of her residency training. She also wonders whether it would be possible to pursue clinical research as a component of her career after the completion of specialty training and, if so, what additional research training she might require.

So, you've just completed your first health sciences research project. Now what? Including research activities as one component of your career as a health professional is an excellent way to keep your interests diversified, to contribute to knowledge generation in your field and, perhaps most importantly, to engage in a wide range of collaborations on interesting issues relevant to your practice. Many health professionals finish their training with a desire to acquire clinical mastery and to be a researcher, but feel that it is impossible to combine these two paths, especially in view of the time involved not only in conducting research but also in acquiring the methodological expertise necessary to do so. Balancing multiple competing obligations is a recognized difficulty in the transition from supervised to independent practice. This chapter makes the case that all health professionals should play some role in research in their field, and that it is possible to participate in research at different levels, and at any point in one’s career.

Few descriptions of medical research careers account for the wide range of projects that a health professional can become involved with, or the various degrees of involvement that are possible. Each type of engagement entails a different level of skill development (which can include study design, statistics, research ethics, database construction and management, and manuscript and grant writing), time commitment, responsibilities and rewards. The following sections describe six variants of research involvement.

CHAPTER OBJECTIVES

After reading this chapter, you should be able to:

- discuss various paths to further involvement in research after the completion of your first research project
- describe the merits of including research activities as a component of your professional career

KEY TERMS

- Co-investigator
- Collaborator
- Critical appraisal skills
- Medical research careers
- Mentor
- Principal investigator
- Recruiter
The critical consumer

Although you might not wish to be an actively participating researcher, all health professionals should, at a minimum, become and remain critical consumers of the published literature relevant to their practice. Completing a research project gives you an appreciation of the challenges inherent in bringing a health research project through all of its stages: from the initial idea to the formulation of a clear research question, to the marshalling of a research team, the creation of data collection instruments, the collection, analysis and interpretation of data, and their synthesis into a completed project report, presentation and perhaps a peer-reviewed publication. Having first-hand experience of these steps and of the ways in which a project can run into difficulties gives you a practical understanding of the research process that can help you to read between the lines of published studies. This insight will undoubtedly complement the critical appraisal skills you will need to be a capable, critical consumer of the health care literature, and will enhance your appreciation of unbiased and rigorous research results. This level of engagement involves keeping up with the literature and maintaining critical appraisal skills. Participating in a journal club that rewards participation with continuing professional development credits is an excellent way to facilitate this. If such a club does not exist where you practise, create one!

The recruiter

A second way in which you can become involved in research is as a recruiter. In this role you are plugged into clinical trials networks or other structures for ongoing health research to see whether patients in your practice would be eligible for enrolment in an appropriate study. Although recruiters are not major players on the research team, it is clear that, without the broad-based support of these front-line practitioners, clinical trials would never attain the sample sizes they need to obtain meaningful results. Identifying and referring potential participants to applicable clinical trials and other health research studies can be rewarding: it links you to research projects through frequent communications from the principal investigator and the study team and through access to preliminary research results. This level of involvement also provides insight into the research process, including any challenges leading up to the synthesis of the research results; can help you to forge links with active researchers; and, can alert you to advances in the field before they are more broadly known. No further research training is required for this type of involvement, and study co-ordinators and hired research assistants tend to provide support for recruiters with regard to study procedures.

The occasional collaborator

The third way to be engaged in health research is as an occasional collaborator. This would mean that you are not actively involved with health research projects at all times, but occasionally collaborate actively in projects that come to your attention and are related to your area of practice. Being an occasional collaborator can include the opportunity to be a coauthor of published results. The best place to formulate important new questions is in the front lines of health care: questions arise every day in clinical practice that might be answered by a structured research project. Being an occasional collaborator might lead you to the next level of research engagement, which is that of a research collaborator with a mentor.

The research collaborator with a mentor

Chapter 5 of this guide stresses the importance of finding a research mentor. If you want to become more engaged in research, you will need—at least in the early part of your research career, whether in the community or in close association with an academic health sciences centre—a mentor to foster the growth of your methodological skills and to open up opportunities for you to gain research experience. It often helps to start as a collaborator on a project under the supervision and guidance of a more experienced researcher. This way, you can learn where your methodological strengths and weaknesses lie and figure out how best to tailor your interests to the range of possible studies and principal investigators available. Although it is to your advantage to find a mentor who is an experienced and accomplished investigator, it is equally important for this person to have a genuine interest in helping you—and the time to do so. At this stage of engagement you might wish to acquire more advanced research skills. Part- or even full-time study in a graduate program, or in short courses, weekend or summer courses, or online courses can enhance your methodological and analytical skills. In addition, specialized health research training programs are available
The co-investigator

The next level of research engagement is that of co-investigator. Co-investigators are an important component of a multiprofessional or interdisciplinary research team and assume substantial responsibility for the execution and oversight of the project. They help with formulating the research question, writing the protocol, and building, structuring and supervising the research team, and typically bring a fairly high level of expertise to the project. Additionally, co-investigators should play a role in the dissemination of results, including by co-authoring manuscripts, preparing abstracts and posters, and presenting results at conferences. Most researchers make the step to co-investigator after having been a mentored collaborator for some time, and typically first serve as a co-investigator with their research mentor. Attaining this level of engagement usually involves formal graduate training in research methodology.

The principal investigator

Finally, in the role of principal investigator, you are in charge of the whole show. You take the lead in formulating the research question, recruiting the research team, and writing the protocol and grant application. You shepherd the project through the ethics review process, take charge of the recruitment and supervision of the support staff, and mentor and lead the research team. I have found being a principal investigator to be among the most rewarding roles of my professional life. The opportunity to work with collaborators and co-investigators from a wide range of professions and disciplines on health-related questions is continually refreshing and challenging. One learns not only new methods but is in contact with talented graduate students who push one's understanding and knowledge and ask questions that frequently expose flaws in one's own reasoning or room for development in one's own skills.

The rewards of a research career

Why do research? What does it bring to a health professional’s career? The rewards are numerous, as the following reflections show.

- The knowledge that informs health practice is best created when practising health professionals have the opportunity to ask questions and look for solutions that aim to provide better health care for future generations of patients and populations, or to develop diagnostic and prognostic tools that help us to better inform our patients about their situation.

- Research is endlessly challenging. One must frequently overcome obstacles that were not foreseen in the protocol phase. This requires patience and ingenuity. I have often referred to grant writing as a form of creative non-fiction in which one must project one or more years into the future things that one wishes to see happen, even though the world in which one does research is not necessarily aligned with those goals. Indeed, perhaps one of the best reasons to persevere with a research career is to see the multiplicity of ways in which the real world can thwart the most beautifully created protocol. This may be frustrating to some, but with a little humour you can come to appreciate these unexpected turns as one of the more fascinating aspects of research.

- A research career permits you to meet, work with and learn from many interesting, bright and engaging colleagues, including graduate students, research coordinators, research associates, not to mention the patients recruited into your studies. I have learned a great deal from the participants in our studies and recently added patients to our Research Advisory Committee: they bring a perspective that is often overlooked in the planning and conduct of study protocols. In addition, research provides opportunities to meet and interact with other researchers by attending and giving presentations at local, national and international meetings.

- Research also offers some more direct personal rewards. It still gives me great pleasure to see a letter of acceptance from a peer-reviewed journal or a letter of congratulations from a funder. These are by no means taken for granted. People who do not engage in research as part of their professional life do not see the immense amount of work it takes to get from a
grant proposal to a peer-reviewed publication. It truly is an accomplishment worth celebrating. Even if most of the world ignores your paper, family members are bound to be pleased to receive a copy of a paper with your name listed among the authors. And—more seriously—publishing in the peer-reviewed literature establishes your credibility and may lead to invitations as a peer reviewer or to participate on expert advisory boards locally and internationally.

- Last but by no means least, your research may contribute to the development of best practices and the improvement of patient outcomes.

Conclusion

There are many paths to engagement in the research process. Increasingly, the more I do research the more I think it should be integral part to every health professional’s activities. In this chapter I have tried to point to some of the ways in which health professionals can integrate research into their day-to-day practice. I hope all readers who are in the midst of or have already completed their health training will find ways to become involved in research in some way in their professional lives.

REFERENCES

ADDITIONAL RESOURCES

- This brief editorial describes initiatives to enhance the attractiveness of research to clinicians.

- Although not focused on medical practice, this book contains a comprehensive account of what is required to do research in practice-based locations.

- This paper contains excellent practical advice on getting a research career started in academic settings.

- This paper highlights the development of clinical research career paths in the United States and outlines current trends.
SUMMARY CHECKLIST

- Thinking about your experiences with research and your career interests, describe the role you would like research to play in your career. Describe how you expect this to change over time.
- Develop your strategy for a successful role in research, as outlined above. Be sure to list:
 - experience you wish to have
 - training you wish to obtain
 - mentors you would like to work with
 - levels of involvement in proposed studies
Reviewers

Katherine Boydell, PhD
Department of Psychiatry
University of Toronto
Toronto, Ontario

Antoinette Colacone, BSc, CCRA
Emergency Multidisciplinary Research Unit–FMRU
Sir Mortimer B. Davis-Jewish General Hospital
Montreal, Quebec

Donald Cole, MD, MSc, FRCPC
Department of Public Health Sciences
Dalla Lana School of Public Health
University of Toronto
Toronto, Ontario

Scott Compton, PhD
Dept of Emergency Medicine
New Jersey Medical School–The University Hospital
Newark, New Jersey

David C. Cone, MD
Department of Emergency Medicine
Yale University
New Haven, Connecticut

Neil Drummond, BA, MFPHM (UK), PhD
Department of Family Medicine and Community Health
University of Calgary
Calgary, Alberta

Nancy Feeley, RN, PhD
School of Nursing
McGill University
Montreal, Quebec

Dionne Gesink, PhD
Dalla Lana School of Public Health
University of Toronto
Toronto, Ontario

Corinne Hohl, MD, FRCPC
Department of Emergency Medicine
University of British Columbia
Vancouver, British Columbia

Tanya Horsley, PhD
Centre for Learning in Practice
Royal College of Physicians and Surgeons of Canada
Ottawa, Ontario

Thomas A. Lang, MA
Tom Lang Communications and Training International
Kirkland, Washington

Trevor Langhan, MD, FRCPC
Division of Emergency Medicine
University of Calgary
Calgary, Alberta

A. Curtis Lee, PhD
Education and Evaluation and Analysis Unit
Royal College of Physicians and Surgeons of Canada
Ottawa, Ontario

Jacques S. Lee, MD, MSc, FRCPC
Department of Emergency Medicine and
Clinical Epidemiology Unit
Sunnybrook Health Sciences Centre
Toronto, Ontario

Marilyn MacDonald, RN, PhD
School of Nursing
Dalhousie University
Halifax, Nova Scotia

Jessie McGowan, BMus, MLIS, PhD
Departments of Medicine and Family Medicine
University of Ottawa
Ottawa, Ontario
Reviewers

Andrew McRae, MD, FRCPC
LHSC–University Hospital
University of Western Ontario
London, Ontario

Diana Petitti, MD, MPH, FACPM
Department of Biomedical Informatics
Arizona State University
Phoenix, Arizona

Robert L. Reid, MD, FRCSC
Division of Reproductive Endocrinology and Infertility
Department of Obstetrics and Gynecology
Kingston General Hospital, Queen’s University
Kingston, Ontario

Norm Rosenblum, MD
Division of Nephrology
The Hospital for Sick Children, University of Toronto
Toronto, Ontario

Howard M. Smith, MS
Medical Writing
INC Research
Richmond, Virginia

Julie Spence, MD, MSc, FRCPC
Department of Emergency Medicine
St. Michael’s Hospital, University of Toronto
Toronto, Ontario

Sharon E. Straus, MD, MSc, FRCPC
Li Ka Shing Knowledge Institute
St. Michael’s Hospital, University of Toronto
Toronto, Ontario

David L. Streiner, PhD, CPsych
Department of Psychiatry and Behavioural Neurosciences
McMaster University, Hamilton, Ontario
Department of Psychiatry
University of Toronto
Toronto, Ontario

Lehana Thabane, BSc, MSc, PhD
Department of Clinical Epidemiology & Biostatistics
McMaster University
Hamilton, Ontario

Ross E.G. Upshur, MD, MA, MSc, CCFP, FRCPC
Department of Family and Community Medicine and
Sunnybrook Health Sciences Centre, University of Toronto
Toronto, Ontario

David R. Urbach, MD, MSc, FACS, FRCSC
Department of Surgery
Toronto General Hospital, University of Toronto
Toronto, Ontario

Robert L. Wears, MD
Department of Emergency Medicine
University of Florida Health Science Center Jacksonville
Jacksonville, Florida

Andrew Worster, MD, MSc, CCFP(EM), FCFP
Division of Emergency Medicine
McMaster University
Hamilton, Ontario
Index

Note: (f) after a page reference denotes a figure, (t) a table.

abstracts
 for case reports/series, 237–38, 243
 checklists for, 244–45
 conference abstracts, 234–35
 functions of, 233–34
 IMRAD structure, 234
 informative vs descriptive, 237, 241–42
 journal abstracts, 235–37, 244–45, 262
 optimizing for electronic retrieval, 238
 revising, 238
 structured/unstructured, 237, 241–42
 for systematic reviews, 237–38, 242–43
See also slide presentations

academic mentors. See mentors

administrative database research, 97–100
allocation concealment, 62, 65, 112–13, 172
alpha (α level), 216, 220–22
ancestry searches, 111
ANOVA (analysis of variance), 217–18
association, 230, 231, 280
authorship of papers, 18, 189, 263
autonomy (respect for persons), 142

before-after (pre-post) studies, 63
beneficence (concern for welfare), 142
beta (β level), 222
bias
 co-intervention bias, 136
 contamination bias, 136
 end-aversion, 73
 information bias, 60, 65–66, 136
 instrument bias, 136
 intervention bias, 136
 measurement bias, 136
 in measurement scales, 73
 non-responder bias, 136
 non-response bias, 93
 publication bias, 111–12, 148, 229
 recall bias, 60, 136
 referral bias, 136
 response bias, 73, 87
 risk of bias tables, 112–13
“satisficing” bias, 73
social desirability bias, 73
systemic bias, 60
withdrawal bias, 136
See also selection bias
bibliographic databases, 42, 44–46(t)
binary (dichotomous) data, 52–53
biological variation, 206–7, 215
BIOSIS database, 42, 44(t)
biostatistics. See statistics
blinding, 62, 65, 112–13, 172
Boolean operators, 43
budgets, 21, 156–57, 158(t)
CanMEDS framework, 11
case-control studies, 59–60, 64(t), 65
case reports and series, 58, 237–38, 243
case selection (chart reviews), 91–95
case studies, 120–21
categorical data, 52–53
causal relationships, 230, 231, 280
central tendency, 198–99
chart reviews, 91–95
CINAHL database, 44(t), 47
citation indexes, 42
citation software, 46
coding errors, 99
Cohen’s d, 107
Cohen’s kappa (κ), 94
collaboration in research projects, 157, 288–89
competencies in health care, 11
competing interests, 148, 263, 280
coefficient sampling design, 85, 86
certainty intervals
 in descriptive statistics, 82, 207–9
Index

in hypothesis testing, 221, 222
statistical significance and, 82, 207–9, 221, 228
confidentiality/privacy, 146, 148, 264
conflicts of interest, 148, 263, 280
confounding, 66
construct validity, 76–77
constructs, hypothetical (latent variables), 71–72
See also measurement scales
contamination bias, 136
continuous data, 53, 204
correlation, 218–19, 230
correlation coefficients, 74
criterion validation, 76
Cronbach’s α, 75
cross-over studies, 63
cross-sectional studies, 59, 64(t)
crystallization, 124

DARE database, 42, 45(t)
data
abstraction, 113
in administrative databases, 97–101
analysis in systematic reviews, 113–16
categorical data, 52–53
continuous data, 53, 204
data cleaning, 180, 183
discrete data, 53, 205–6
heterogeneity, 113
interval data, 53
levels of measurement (types of data), 52–53
nominal data, 52, 204–5
optimizing data quality, 93
ordinal data, 53, 205
quantitative data, 53–54
data analysis (qualitative), 123–24
data analysis (quantitative). See descriptive statistics; hypothesis testing (inferential statistics)
data cleaning, 180, 183
data collection
from administrative databases, 98–100
contextualizing, 180
demographic information, 180
designing the form, 180–82
identification of respondents, 180, 190
privacy/confidentiality issues, 146, 180, 264
in qualitative research, 121–23
question formats, 182
selection bias in data extraction, 93
stated in research protocols, 134, 135
survey modes, 83, 179
in systematic reviews, 113–16
testing in pilot studies, 172
using medical records, 92, 179
using volunteers, 157
validity, reliability, practicality, 179
data-sharing agreements, 99
data variables
co-variables, 52
definition and role, 51, 52, 54
outcome, 52, 135
predictor, 52
databases, administrative, 97–100
databases, bibliographic, 42, 43, 44–46(t), 47
dependent variables, 52
descriptive statistics
biological variation, 206–7, 215
certainty intervals, 82, 207–9
dichotomous data, 204–5
discrete data, 53, 205–6
frequency distribution, 198–99, 214
measures of central tendency, 198–99
measures of variability (dispersion), 200–1, 202
measuring/interpreting data variability, 206–9
nominal data, 204–5
normal (Gaussian) distribution, 201
ordinal data, 53, 205
precision, 82, 87, 206–9
random variation, 206–7, 215
skewed distributions, 201–4
standard deviation, 200–1, 203, 209
standard error, 207, 209
statistical testing and reporting, 204
descriptive studies, 58, 64(t)
design effect, 86
dichotomous (binary) data, 52–53
differential misclassification, 65
discrete data, 53, 205–6
dispersion, 200–1, 202
double entry, 183

ecologic fallacy, 59
ecologic studies, 59
Index

effect modification, 66
electronic health records (EHRs), 98
electronic medical records (EMRs), 98
Embase database, 42, 43, 45(t), 47
Emtree subject headings, 42, 43, 45(t)
end-aversion bias, 73
ethics considerations
 in chart reviews, 94
 in the FINER criteria, 1, 38
 in program evaluations, 107
 in publishing papers, 263–64
 in qualitative research, 125
 research protocols, 137
 role of study sponsors, 263
ethics review
 clinical trial registration, 148–49, 264
 conflicts of interest, 148
 institutional research administration, 148, 149–50
 issues considered, 144–48
 necessary for publication, 264
 pilot studies, 175
 protocol amendments, 148, 188
 reasons for, 141–42
 Research Ethics Board (REB), 143–44
 standards for health sciences research, 142–43, 150
 studies requiring review, 144
ethnography, 120
evidence tables, 113–15
Excel software, 182–83, 184(t)
exclusion criteria, 164
experimental studies, 62, 64(t)
external validity (generalizability), 64, 82–83, 164
face validity, 182
feasibility studies. See pilot studies
field observation, 121
FINER criteria, 1, 38
finite population correction, 85, 86
focus groups, 121–22
forest plot, 113, 115(f)
framing, 181
frequency distribution, 198–99
funding for research
 budgeting, 21, 156–57, 158(t), 190, 191(t)
 determining resource requirements, 155–56
 formal funding, 157–59, 160–62
informal funding, 159–60
managing study finances, 190
for pilot studies, 175
See also granting agencies
Gaussian distribution, 201
generalizability (external validity), 64, 82–83, 164
Google Scholar, 42
granting agencies
 formal research funding, 157–59, 160–62
 grant applications, 21, 37
 institutional research administration and, 149–50
 research protocols, 131–38
 research questions and, 37
 See also funding for research
grey literature, 47, 111–12
grounded theory, 124
health datasets, 97
health professions education research
 categories of studies, 104–6
 conducting a project, 106–7
 spectrum of education, 103–4
“hedges” search strategy, 47
heterogeneity, 113
human resources for research projects, 155–57
hypothesis generation, 38
hypothesis testing (inferential statistics)
 alpha (α level), 216, 220–22
 ANOVA (analysis of variance), 217–18
 beta (β level), 222
 chi-squared test, 219
 clinical importance, 216–17
 confidence intervals, 221, 222
 correlation, 218–19, 230
 description, 38–39, 214–16, 228
 non-parametric statistical tests, 218, 219
 null hypothesis, 215–16, 227–28
 one-tailed tests, 220
 P value (see P value)
 paired t test, 217
 parametric statistical tests, 218, 219
 regression, 219
 sample size calculation, 222–23
 statistical power, 222
<table>
<thead>
<tr>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>statistical significance (see statistical significance)</td>
</tr>
<tr>
<td>test statistic, 215</td>
</tr>
<tr>
<td>two-tailed tests, 220</td>
</tr>
<tr>
<td>Type I and II errors, 220–21, 222</td>
</tr>
<tr>
<td>unpaired t test, 218</td>
</tr>
<tr>
<td>hypothetical constructs (latent variables), 71–72</td>
</tr>
<tr>
<td>See also measurement scales</td>
</tr>
<tr>
<td>immersion/crystallization, 124</td>
</tr>
<tr>
<td>imputation, 93</td>
</tr>
<tr>
<td>IMRAD structure for papers, 125, 234</td>
</tr>
<tr>
<td>in-depth interviews, 121–22</td>
</tr>
<tr>
<td>incidence/surveillance studies, 58</td>
</tr>
<tr>
<td>inclusion criteria, 163–64</td>
</tr>
<tr>
<td>independent variables, 52</td>
</tr>
<tr>
<td>inferential statistics. See hypothesis testing (inferential statistics)</td>
</tr>
<tr>
<td>information bias, 60, 65–66, 136</td>
</tr>
<tr>
<td>information technology personnel</td>
</tr>
<tr>
<td>on research teams, 189</td>
</tr>
<tr>
<td>informed consent, 142, 145–46, 147(t)</td>
</tr>
<tr>
<td>instrument bias, 136</td>
</tr>
<tr>
<td>inter-observer agreement, 94</td>
</tr>
<tr>
<td>inter-rater reliability/agreement, 74, 113</td>
</tr>
<tr>
<td>internal consistency, 74–75</td>
</tr>
<tr>
<td>internal validity</td>
</tr>
<tr>
<td>defining study population and, 164</td>
</tr>
<tr>
<td>definition, 65</td>
</tr>
<tr>
<td>threats to, 190, 193</td>
</tr>
<tr>
<td>interquartile range (IQR), 200, 202</td>
</tr>
<tr>
<td>interrupted time series analyses, 63</td>
</tr>
<tr>
<td>interval data, 53</td>
</tr>
<tr>
<td>intervention bias, 136</td>
</tr>
<tr>
<td>interviews, in-depth, 121–22</td>
</tr>
<tr>
<td>intra-class correlation coefficient, 74</td>
</tr>
<tr>
<td>intra-rater agreement, 113</td>
</tr>
<tr>
<td>iterative loop, 26, 27(f)</td>
</tr>
<tr>
<td>journal clubs, 20, 157, 288</td>
</tr>
<tr>
<td>justice principle, 142, 143</td>
</tr>
<tr>
<td>Kirkpatrick's four-level framework, 106–7</td>
</tr>
<tr>
<td>knowledge translation</td>
</tr>
<tr>
<td>action cycle, 272–74</td>
</tr>
<tr>
<td>clinical decision-making and, 269–70</td>
</tr>
<tr>
<td>description, 269–70, 277</td>
</tr>
<tr>
<td>determinants of knowledge use, 271</td>
</tr>
<tr>
<td>importance, 270–71</td>
</tr>
<tr>
<td>integrated knowledge translation, 270–71</td>
</tr>
<tr>
<td>iterative loop, 26, 27(f)</td>
</tr>
<tr>
<td>knowledge creation, 271–72, 273(f)</td>
</tr>
<tr>
<td>knowledge-to-action cycle, 271–74</td>
</tr>
<tr>
<td>research question, 39</td>
</tr>
<tr>
<td>role of research networks, 25</td>
</tr>
<tr>
<td>See also media</td>
</tr>
<tr>
<td>Kruskal-Wallis test, 219</td>
</tr>
<tr>
<td>latent variables (hypothetical constructs), 71–72</td>
</tr>
<tr>
<td>librarians, 41, 42, 46–47</td>
</tr>
<tr>
<td>Likert scales, 182</td>
</tr>
<tr>
<td>literature review</td>
</tr>
<tr>
<td>ancestry searches, 111</td>
</tr>
<tr>
<td>Boolean operators, 43</td>
</tr>
<tr>
<td>clinical trial registries, 112, 148–49</td>
</tr>
<tr>
<td>grey literature, 47, 111–12</td>
</tr>
<tr>
<td>hand searching, 47, 111</td>
</tr>
<tr>
<td>PRISMA guidelines, 47</td>
</tr>
<tr>
<td>purpose, 39, 41</td>
</tr>
<tr>
<td>in research protocols, 133</td>
</tr>
<tr>
<td>search strategies, 42–43, 46, 47</td>
</tr>
<tr>
<td>snowball searching, 47</td>
</tr>
<tr>
<td>sources, 41, 42, 44–46(t)</td>
</tr>
<tr>
<td>steps, 41</td>
</tr>
<tr>
<td>storing searches and results, 46–47</td>
</tr>
<tr>
<td>longitudinal surveys, 59</td>
</tr>
<tr>
<td>management of the study</td>
</tr>
<tr>
<td>amendment of protocol, 148, 188</td>
</tr>
<tr>
<td>data security, 189–90</td>
</tr>
<tr>
<td>finances, 190, 191(t)</td>
</tr>
<tr>
<td>monitoring protocol compliance, 190</td>
</tr>
<tr>
<td>monitoring study progress, 190, 193</td>
</tr>
<tr>
<td>research diary, 193</td>
</tr>
<tr>
<td>threats to internal validity, 190, 193</td>
</tr>
<tr>
<td>time management, 188, 190, 192(t)</td>
</tr>
<tr>
<td>working with research team, 18–19, 188–89</td>
</tr>
<tr>
<td>Mann-Whitney U test, 219</td>
</tr>
<tr>
<td>margin of error in surveys, 82, 87</td>
</tr>
<tr>
<td>mean, 199, 202, 203–4</td>
</tr>
</tbody>
</table>
Index

measurement bias, 136
measurement scales
 assessing health/behaviour, 71–72
 checking items, 73, 84
 construct definition, 72
 developing items for, 72–73, 84
 Likert scales, 182
 lists of, 78, 79
 reliability of, 73–75
 utility of, 77–78
 validity of, 76–77
media
 benefits of using, 278–79
 interviews, 282–83
 journalists’ and researchers’ perceptions of each other, 277–78
 letters to the editor, 283
 pitfalls in reporting scientific findings, 278–81
median, 199, 202, 203–4
medical record reviews (MRR), 91–95, 259–60
MEDLINE, 42, 43, 45(t), 46, 47, 238
mentors
 as advisors, 31
 importance of, 29, 288–89
 opportunities afforded, 30–31
 protection from academic attacks, 31–32
 provision of resources, 29–30
 selecting, 32
MeSH subject headings, 43, 238
meta-analyses, 109, 110
missing values, 93
mode, 199
MOOSE Statement, 116

N-of-1 studies, 63
narrative reviews, 109
natural experiments, 63
needs assessment, 104
negative predictive value (NPV), 76
nominal data, 52, 204–5
non-differential misclassification, 66
non-parametric statistical tests
 use, 204
null hypothesis, 136
null hypothesis, 215–16, 227–28
observational studies, 61, 229–30, 231
odds ratio, 60, 230
ordinal data, 53, 205
outcome variables, 52, 135
outliers, 202

P value
 alpha (α level), 216, 220–22
 description, 216–17, 227–28
 null hypothesis, 215–16, 227–28
 two- and one-tailed tests, 220
paired t test, 217
parameter estimation, 38
parametric statistical tests, 204
participant observation, 120
participant retention, 165–66
participant selection/recruitment
 assessing in pilot studies, 171–72
 defining study population, 163–64
 determining number of subjects needed, 166
 identification of participants, 180, 190
 inclusion/exclusion criteria, 163–64
 logistical/feasibility issues, 166
 losses to follow-up, 165–66
 recruiting, 165
 review by ethics boards, 144, 145
 reviewed in research protocols, 134
 screening for study participants, 164–65
 selection bias, 164–65
 source population, 163
 study sample, 134, 163–64
 for surveys, 83–84
 target population, 163
 threats to internal validity, 193
 See also privacy/confidentiality; sampling
pearl-growing strategy, 46, 111
Pearson product-moment correlation coefficient, 74, 218–19
Pediatric Emergency Research of Canada (PERC), 25–27
percentile, 199, 200
PICOT approach, 1, 39–40, 57, 111
pilot studies
 description, 169–70
 determining sample size, 174
Index

ethics board approval, 175
funding, 175
purposes, 170–74, 176
reporting/publishing, 175
using data in full study, 175–76
placebo effect, 63
placebos, 62
point estimates, 83, 87
populations
 internal validity and study populations, 164
 source population, 163
 target population, 163
 vulnerable populations, 142
 See also participant selection/recruitment
positive predictive value (PPV), 76
poster presentations
 content requirements, 251
 presenting the poster, 247, 253
 style and format, 251, 252(f)
 using PowerPoint, 251, 253
PowerPoint, 248–50, 251, 253
pre-studies. See pilot studies
predictor variables, 52
prevalence studies, 58
principal investigators, 137, 187, 289
PRISMA guidelines, 47, 116
privacy/confidentiality, 146, 148, 264
program evaluations of health professions education, 105–6
psychometrics, 73
publication bias, 111–12, 148, 229
publishing research. See knowledge translation; media; publishing
 confidentiality of participants, 264
 conflict of interest, 263
 criteria for authorship, 263
 editorial freedom, 264
 ethical considerations, 263–64
 ethics approval, 264
 formatting submissions, 261
 peer review process, 262–63
 pilot studies, 175
 redundant publication or fraud, 281
 rejection, 21–22, 262–63, 265
 role of study sponsor, 263
 submission package, 261–62
trial registration, 264
See also abstracts; writing a paper
PubMed (MEDLINE), 42, 43, 238

qualitative research
 collecting data, 121–23
 data analysis, 123–24
 description, 119–20
 ensuring quality, 124–25
 ethical considerations, 125
 methodologies, 120–21
 reflexivity and, 124
 writing the paper, 125–27
quantitative data, 53–54
quantitative research, 58–64, 91–95, 104–8
 See also descriptive statistics; pilot studies; research design
quasi-experimental studies, 63
questionnaires
 analysis, 182–83, 184(t)
 in cross-sectional studies, 59
 designing the form, 180–82
 ensuring validity, 82
 face validity, relevance, clarity, 182
 in focus groups, 122
 information bias and, 65
 question formats, 182
 See also data collection; measurement scales; surveys
RACI management tool, 20–21
random error/variation, 64–65
random sampling, 82, 84–85
random variation, 206–7, 215
randomized controlled trials (RCTs)
 allocation concealment, 62, 65, 112–3, 172
 blinding in, 62, 65, 172
 comparability of study groups, 62
 pilot studies for, 172
range, 200
ratio data, 53
recall bias, 60, 136
recruiting study participants. See participant selection/recruitment
redundancy (saturation), 123
Index

reference software, 46
referral bias, 136
reflexivity, 124
registration of clinical trials, 148-49, 264
regression analysis, 61, 230
reliability
 administering tests, 77
 assessing measurement scales, 73–75
 in data collection, 179
 inter-rater reliability, 74
 test-retest reliability, 74
representive surveys, 82
research
 as co-investigators, 21, 137, 189, 289
 as collaborators, 288–89
 as critical consumers, 288
 grant applications, 21
 institutional administration, 148, 149–50
 interdisciplinary, 19, 26–27
 as principal investigators, 137, 187
 as recruiters, 288
 rewards of a research career, 289–90
 time frame, 21–22
research coordinators, 166, 188
research design
 before-after (pre-post) studies, 63
 case-control studies, 59–60, 64(t)
 case studies, 120–21
 cohort studies, 60–62, 64(t)
 confounding, 66
 cross-over studies, 63
 cross-sectional studies, 59, 64(t)
 descriptive studies, 58, 64(t)
 design effect, 86
 ethnography, 120
 experimental studies, 62, 64(t)
 feasibility of, 156
 generalizability (external validity), 64, 82–83
 internal validity, 64–65
 interrupted time series analyses, 63
 N-of-1 studies, 63
 natural experiments, 63
 observational studies, 61
 qualitative, 121–23
 quantitative, 58–64
 quasi-experimental studies, 63
 stepped wedge, 62
study biases, 60, 65–66, 73, 87
research disciplines, 27
research environment, 27
Research Ethics Board, 143–48
 See also ethics review
research in residency
 common pitfalls, 5
 core competency, 11
 grant applications, 21, 37
 interdisciplinary, 19
 parallels with clinical practice, 19–20
 prospective, 13
 RACI management tool, 20–21
 reasons for, 12, 13, 27
 retrospective, 12–13
 road map, 1–5
 time frame, 22
research networks, 25, 27, 157
research outlines, 2, 156, 175
research protocols
 amendments, 148, 188
 components, 132–38
 description, 131
 ethical considerations, 137
 ethics review (see ethics review)
 monitoring compliance with, 190
 for systematic reviews, 111
 tips for writing, 131–32, 136
research questions
 ethical review and, 144
 FINER criteria, 1, 38
 formulating, 38–40
 PICOT approach, 1, 39–40, 57, 111
 refining, 37–38
 research ideas, 35–38
 in research protocols, 133
 in systemic reviews, 111
research supervisors
 authorship of papers, 18, 189
 collaborative supervisory teams, 16–17
 communication with, 18
 conflict resolution, 19
 establishing norms (rules), 18–19
 funding record/assistance, 156–57
 informal learning, 20
 project or process focused, 15–16
 selection, 1, 16–17
work management, 18
See also mentors

research teams
advantages, 16–17, 25, 27
authorship of papers, 18, 189
collaborative, 16–17
communication, 18–19, 189
interdisciplinary, 19
norms for conduct, 18–19
personnel on, 188–89
RACI management tool, 20–21
team skills, 17, 19
working effectively with, 188–89

resources and research feasibility, 156
response bias, 73, 87
response rates, 83–84, 87
retaining study participants, 165–66
risk
absolute vs relative, 279
context and, 279–80
ethical review of, 145
minimal risk, 145

sample size
calculating, 135, 137, 166
estimating from pilot studies, 173–74
in medical record reviews, 92
numbers needed for specified precision, 213, 222–23
for pilot studies, 174
in qualitative research, 123, 124–25
statistical power and, 222–23
in surveys, 82, 85–86

sampling
for medical record reviews, 93
purposive, 122
in qualitative research, 122–23, 124–25
redundancy, 123
for surveys, 84–85
See also participant selection/recruitment

sampling frame, 83
“satisficing” bias, 73
scales. See measurement scales
Scholar Role (CanMEDS framework), 11
Scopus database, 42
selection bias
in data extraction, 93
description, 134
detection in research protocol, 134–35
screening study participants, 164–65
in survey participants, 87
in systemic reviews, 111–13
selection of participants. See participant selection/recruitment
sensitivity analyses, 112
simple random sampling, 84–85, 86, 93

slide presentations
preparing the slides, 248–49
presentation strategies, 250–51
slide formats, 249–50(f)
tables and figures, 249–50
time limitations, 247
SMART research objectives, 134
snowball searching, 47
social desirability bias, 73
source population, 163
Spearman rank correlation, 218–19
spectrum of health professions education, 103, 104(f)
standard deviation, 200–201, 203, 209
standard error, 207, 209
statistical significance
alpha (α level), 216, 220–21
confidence intervals, 82, 207–9, 221, 228
definition, 216
“negative” studies, 229
null hypothesis, 215–16, 227–28
odds ratio, 60, 230
P value, 216–17, 220–22, 227–28
subgroup analysis, 229
vs clinical importance, 216–17, 231
statistical software, 87

statisticians
in administrative data research, 99–100
data interpretation, 135, 189, 228
determining sample size, 135, 137, 166, 189
on research teams, 189
in survey design, 85, 86, 87–88

statistics
descriptive (see descriptive statistics)
design effect, 86
imputation, 93
inference (see hypothesis testing)
[inferential statistics]
Index

margin of error in surveys, 82, 87
missing values, 93
precision, 82, 87, 206–9
See also statistical significance; statisticians
stepped wedge research design, 62
stratification, 61
study samples, 163–64
subject headings, 42–43
surveys
conducting, 86–87
definition, 82
designing, 82–86
resources, 9, 87–90
samples and sampling, 83–86
survey mode, 83–84
valid surveys, 82
systematic reviews
data collection/analysis, 113–16
forest plot, 113, 115(f)
literature search information, 47
purposes of, 110
research question/protocol, 111
risk of bias tables, 112–13
sample selection, 111–12
selection bias, 111–13
types of reviews, 109–10
writing paper on, 259–60
systemic bias, 60

tables and figures in slide presentations, 249–50
target population, 163
test-retest reliability, 74
time management
importance to career, 29
RACI tool, 20–21
in research study, 188, 190, 192(t)
Tri-Council Policy Statement, 142–43, 150
trial registration, 112, 148–49, 264
trial runs. See pilot studies
true zero point, 53
utility of measurement scales, 77–78
validity
construct, 76–77
in data collection, 179
ethical review and, 145
external, 64
face validity, 182
internal validity, 65, 164, 190, 193
of measurement scales, 76–77
in questionnaires, 82
of surveys, 82
variability (dispersion) of data, 198
variables
data, 51, 52, 54, 135
definition in research protocols, 135
latent, 71–72
variance, 87, 201
volunteers in research projects, 157
vulnerable populations, 142

Web of Science database, 42
Wilcoxon signed-rank test, 219
withdrawal bias, 136
writing a paper
abstract (see abstracts)
conclusion section, 234, 259
copyright issues, 261, 263
discussion section, 127, 230, 259
formatting for submission, 261
IMRAD structure, 125, 234
introduction, 125, 234, 257
on medical record reviews, 259–60
methods section, 125, 127, 234, 257–58
peer review process, 256, 262–63
qualitative papers, 125–27
results section, 127, 234, 258–59
rules of effective writing, 235, 260–61, 265
submission package, 261–62
on systematic reviews, 259–60
tables, 258–59
tips for writing a paper, 255–56
title, 256–57
See also publishing